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Non-Linear Regression
Gaussian Mixture Regression (GMR)



APPLIED MACHINE LEARNING =

Gaussian Mixture Regression (GMR): Principle

Given a multimodal dataset

XERNX,yeRNy

X,y are random vectors with dimension N, and N, respectively

1) Estimate the joint density, p(x,y)
2) Estimate y given x by estimating the conditional density, p(y|x)

We need to decide on a probabilistic model for p(x,y).
GMR assumes that p(x,y) is modeled by a mixture of Gaussians

p(0Y)= e -p(xyia ) with p(xyiut T) =N (a5
k=1

1, > mean and covariance matrix of Gaussian component k.
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GMR: with a single Gaussian component (k=1

p(X,y) ~ N (1,%) ; wand X are maximum likelihood estimates
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GMR: with a single Gaussian component (k=1

1) We first estimate the joint density, p(x,y), across pairs of datapoints with a single

Gauss distribution.
2) Then, we compute p(y|x) in order to estimate y for a query point x.

_ _ p(x.y)
p(x, y) = p(y [ X)p(x) = p(y[x) () | P = p(x, y)dy
Marginal /

distribution

2D projection of a
Gauss function
Ellipse contour, e.g. 2
std deviations
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GMR: with a single Gaussian com

The marginals and the conditionals of a joint Gauss distribution
are also Gauss distributions?!

Joint Density Marginals Conditional

PO Y) ~ N(GYI 5 | p(x) = (x| 1, 5.) PCY [ X) ~ N(Y; 2y Z )

1u|x:/uy+zyx X(X /ux)
. /le ZX ZX ~N’ ’Z y
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GMR: with a single Gaussian com

Given a query point x*, we compute the conditional.

The mean of the conditional distribution i1s the model’s
prediction. y(x*): E{p(y|x*)} =
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GMR: with a single Gaussian com

Given a query point x*, we compute the conditional.

The mean of the conditional distribution i1s the model’s
prediction. y(x*): E{p(y|x*)} =
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GMR: with multiple Gaussian components (k>1

1) Estimate the joint density, p(X,y), across pairs of datapoints using GMM.
K
p(X%,Y)=2 - p(xyiu X ), with p(x v, X ) =N (g, 2")
k=1

u', > mean and covariance matrix of Gaussian k.

v
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GMR: with multiple Gaussian components (k>1)

1) Estimate the joint density, p(X,y), across pairs of datapoints using GMM.
K

(X Y) =D e - p(x yiu 2
k=1

u', > mean and covariance matrix of Gaussian k.

with p(x,y;yk,Zk)zN(yk,Zk)

Parameters are learned through Expectation-maximization.
Iterative procedure.

> Iterate until convergence

v
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Estimating the joint distribution

1) Estimate the joint density, p(X,y), across pairs of datapoints using GMM.

p(xy)= @) p(xyist T)  with pxyiut T¥) =N (s, X))
k=1

u', > mean and covariance ix-af Gaussian k.
K
Mixing Coefficients Zak =1
A k=1
y Relative importance of each
- Gaussian k (measure how well the
Gaussian explains the dataset):

o, =a,
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Estimating the marginal distribution

2) Estimate conditional p(y|x)= p(X, )

= [ , d —
Marginal P(x) ] p(x, y)dy

distribution = 'ZK:ak N (x, YA7A % )dy
© k=1

=iak-IN(x,y;yk,Zk)dy
k=1

A K

=1
The marginal is again

a GMM
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Estimating the conditional distribution

2) Estimate conditional p(y|x)= p(x.y)
p(x)
K K
P06 Y) =Y e (% i 24) = Y p(xi s Vo (y it 55 )
k=1 1

The covariance matrix of each
Gauss function k can be
decomposed into blocks of matrices

k k
Zk _ |:Zxx ny ]
Yhooxk |
yX yy
with Z';X and Z"W the

covariance matrices on x and y and

Z‘;y the crosscovariance matrix.
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Estimating the conditional distribution

p(X,y)

2) Estimate conditional p(y|x)=
p(x)

The conditional is again a GMM

p(y]x) Zﬁk p(y % a2h, 25, )

\

Weight of the marginals

o (%, )
Zak PX; 1, Z5)
k=1

Set 3, (x) =
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ylx /uy|x’ y|x)

Gauss function

The expression changes depending on the query point
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Estimating the conditional distribution

p(y|x)=gﬁk(x)p(y|x;u;X,z;X)

(o (% 1, 2
with S, (X) = = ( )
Influence of each marginal Zak (X /ux ,2 )
is modulated by a
y The factors f give a
measure of the relative
importance of each K

B, (x) regressive model.
\ They are computed at each
‘,31 (X) query point > weighted

\ regression

X




APPLIED MACHINE LEARNING

Computing the regression

=y = z B, (X , Linear combination of K local
K1 regressive models
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Computing the variance

Computing the variance var{p(y|x)} provides information on the variability of the
prediction.

wit 5% 3! -3 (1)

The variance of the model is a weighted
combination of the variances of the models
around the weighted mean.

ﬂl(x):ﬂz(x) E{p(ylx)}

A

Careful: This is not the uncertainty of the model.
Use the likelihood to compute the uncertainty of the model!
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Interpreting the variance

The variance var{p(x,y)} can be visualized all around the regressive line. It
provides information on the evolution of the noise in state space.

Var{ p(Y] x)} Color shading gives the
likelihood of the model

(uncertainty).
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Observe the modulation of the variance from small variance in first
Gauss function to large variance in the second Gauss function.
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GMR: Sensitivity to Choice of K and
Initialization

.....
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GMR: Sensitivity to Choice of K and
Initialization

Fit with 4 Gaussians
Uniform initialization
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GMR: Sensitivity to Choice of K and
Initialization

Fit with 4 Gaussians
Random initialization
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GMR: Take home message

GMR proceeds in two steps:

 Parametrize the density p(X,y) and then estimate solely the parameters. The
density is constructed from a mixture of K Gaussians

O Compute the regression from the expectation over the conditional.

Such generative model provides more information than models that directly
computing p(y|x).

—> It allows to learn to predict a output y.
—> It allows to embed correlations across the output dimensions .
—> It allows to query x giveny, i.e. to compute p(x|y).

It comes at the cost of computing the full distribution, while often we care only
for the conditional.

The estimate depends on E-M which iIs very sensitive to initialization.




